SWAN-WEIBEL'S HOMOTOPY TRICK AND INVERTIBLE MODULES OVER MONOID ALGEBRAS

CMS Winter Meeting, 5-8 December 2014, Hamilton, Canada

Husney Parvez Sarwar

Department of Mathematics, IIT Bombay, India

Abstract

Let $A \subset B$ be an extension of commutative reduced rings and $M \subset N$ an extension of positive commutative cancellative torsion-free monoids. We prove that A is subintegrally closed in B and B is subintegrally closed in B and only if the group of invertible A-submodules of B is isomorphic to the group of invertible A[M]-submodules of B[N].

Assumptions

- Throughout rings are commutative and monoids are positive commutative cancellative torsion-free.
- $A \subset B$ will denote the extension of rings and $M \subset N$ will denote the extension of monoids.

Definitions

- $\mathscr{I}(A,B) :=$ The group of all invertible A-submodules of B
- The extension $A \subset A[b]$ is called **elementary subintegral** if $b^2, b^3 \in A$.
- The extension $A \subset B$ is called **subintegral** if $B = \bigcup_{\lambda} B_{\lambda}$, where each B_{λ} is obtained from A by a finite succession of elementary subintegral extensions.
- The **subintegral closure** of A in B, denoted by ${}_{B}^{\top}A$, is the largest subintegral extension of A in B.
- We say A is subintegrally closed in B if ${}_B{}^{\dagger}\!A = A$.
- The extension $M \subset N$ is called **elementary subintegral** if $N = M \cup xM$ for some x with $x^2, x^3 \in M$.
- Replacing (A,B) by (M,N) in the above, we get the similar defintions for the monoid extension.

Motivation and Introduction

The group $\mathscr{I}(A,B)$ has been studied extensively by Roberts and Singh [6]. Recently Sadhu and Singh ([7], Theorem 1.5) proved that A is subintegrally closed in B if and only if $\mathscr{I}(A,B) \cong \mathscr{I}(A[\mathbb{Z}_+],B[\mathbb{Z}_+])$.

Motivated by this result, we inquire the following statement. A is subintegrally closed in B and M is subintegrally closed in N if and only if $\mathcal{I}(A,B)$ is isomorphic to $\mathcal{I}(A[M],B[N])$.

Main Theorem

- (a) If A[M] is subintegrally closed in B[N] and N is affine, then $\mathscr{I}(A,B)\cong\mathscr{I}(A[M],B[N])$.
- (b) If B is reduced, A is subintegrally closed in B and M is subintegrally closed in N, then $\mathscr{I}(A,B) \cong \mathscr{I}(A[M],B[N])$.
- (c) If M = N, then the reduced condition on B is not needed i.e. if A is subintegrally closed in B, then $\mathscr{I}(A,B) \cong \mathscr{I}(A[M],B[M])$.
- (d) (converse of (a,b) and (c)) If $\mathscr{I}(A,B) \cong \mathscr{I}(A[M],B[N])$, then (i) A[M] is subintegrally closed in B[N] and (ii) B is reduced or M=N.

Key Lemma (uses Swan-Weibel's homotopy trick)

Let $R = R_0 \oplus R_1 \oplus \cdots$ and $S = S_0 \oplus S_1 \oplus \cdots$ be two positively graded ring with $R \subset S$ and $R_0 \subset S_0$. If the canonical map $\theta(R,S): \mathscr{I}(R,S) \to \mathscr{I}(R[X],S[X])$ is an isomorphism, then the canonical map $\theta(R_0,S_0): \mathscr{I}(R_0,S_0) \to \mathscr{I}(R,S)$ is also an isomorphism.

Proof of the Key Lemma (sketch)

- \mathscr{I} is a functor from the category of ring extensions to the category of abelian groups. For any morphism $\phi:(R,S)\to(R',S')$, $\mathscr{I}(\phi)$ denotes the group homomorphism from $\mathscr{I}(R,S)\to\mathscr{I}(R',S')$.
- The following is a very important map. Let $w:(R,S) \to (R[X],S[X])$ be a map defined as $w(s)=s_0+s_1X+\cdots+s_rX^r$, where $s=s_0+s_1+\cdots+s_r\in S$.
- Let us look at following commutative diagram where all the maps are obvious

$$\mathscr{I}(R,S)$$
 $\xrightarrow{\mathscr{I}(w)}$ $\mathscr{I}(R[X],S[X])$ $\xrightarrow{\mathscr{I}(e_1)}$ $\mathscr{I}(R,S)$ $\xrightarrow{\mathscr{I}(R,S)}$ $\mathscr{I}(R_0,S_0)$ $\xrightarrow{\theta(R_0,S_0)}$ $\mathscr{I}(R,S)$.

- e_1, e_0 are evaluation map at X = 1, X = 0 respectively.
- Analyzing the diagram, one can conclude the Proof.

(3) Proof of the Main Theorem (a)

- Since *N* is positive affine, *N* has a positive grading. Since *M* is a submonoid of *N*, it has a positive grading induced from *N*.
- Therefore both A[M] and B[N] have positive grading. Hence we can write $A[M] = A_0 \oplus A_1 \oplus \cdots$ and $B[N] = B_0 \oplus B_1 \oplus \cdots$ with $A_0 = A_1 \oplus A_2 \oplus A_3 \oplus \cdots$ and $A_1 \oplus A_2 \oplus \cdots$ with $A_0 = A_1 \oplus \cdots$ with $A_0 = A_1 \oplus \cdots$ and $A_1 \oplus \cdots$ with $A_0 = A_1 \oplus \cdots$ with $A_0 = A_1 \oplus \cdots$ with $A_0 = A_1 \oplus \cdots$ and $A_1 \oplus \cdots$ with $A_0 = A_1 \oplus \cdots$ with $A_1 \oplus \cdots$ with A_1
- We define R := A[M], S := B[N] and $R_0 := A$, $S_0 := B$. By hypothesis, R is subintegrally closed in S, hence by Sadhu and Singh, $\mathscr{I}(R,S) \cong \mathscr{I}(R[X],S[X])$.
- Therefore by the Key Lemma, we obtain that $\mathscr{I}(A,B)\cong \mathscr{I}(A[M],B[N]).$

An Interesting Corollary

Assume that A is subintegrally closed in B and M is subintegrally closed in N.

(i) If B is reduced or M = N then A[M] is subintegrally closed in B[N].

(ii) Conversely if A[M] is subintegrally closed in B[N] and N is affine, then B is reduced or M=N.

Application to Anderson's Result

- Let *A* be a reduced seminormal ring which is Noetherian or an integral domain. Let *M* be a positive seminormal monoid.
- Let K be the total quotient ring of A. Then K is a finite product of fields, hence Pic(K) is a trivial group. By Anderson ([3], Corollary 2), Pic(K[M]) is a trivial group.
- We have U(K) = U(K[M]) and U(A) = U(A[M]).

$$1 \longrightarrow U(A) \longrightarrow U(K) \longrightarrow \mathscr{I}(A,K) \longrightarrow Pic(A) \longrightarrow Pic(K)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow U(A[M]) \longrightarrow U(K[M]) \longrightarrow \mathscr{I}(A[M],K[M]) \longrightarrow Pic(A[M]) \longrightarrow Pic(K[M])$$

• Since by the Main Theorem $\mathscr{I}(A,K)\cong\mathscr{I}(A[M],K[M])$, we get that $Pic(A)\cong Pic(A[M])$. In this way we deduce the clasical result of Anderson from the Invertible module theory.

Summary/Conclusion

- Motivated by the result $\mathscr{I}(A,B) \cong \mathscr{I}(A[X],B[X])$ of Sadhu and Singh, we proved analogous results for the positive monoids.
- It will be very interesting to see analogous result for non positive monoids.
- We have some partial results in this direction.

Remark

The results of this poster are going to appear in Journal of Commutative Algebra.

Acknowledgement

I am grateful to my advisor, Prof. Manoj K. Keshari, for his guidance, motivation and many useful discussions. I thank Vivek Sadhu for introducing his results to me. I acknowledge the financial support of Council of Scientific and Industrial Research (C.S.I.R.), Government of India.

References

- [1] D.F. Anderson, *Projective modules over subrings of* k[X,Y] *generated by monomials*, Pacific J. Math. **79** (1978), 5-17.
- [2] D.F. Anderson, Seminormal graded rings II, J. Pure Appl. Algebra 23 (1982), no. 3, 221-226.
- 351. [4] W. Bruns and J. Gubeladze, *Polytopes, Rings and K-Theory*, Springer Monographs in Math-

[3] D.F. Anderson, The Picard group of a monoid domain, J. Algebra 115 (1988), no. 2, 342-

- ematics, 2009.
- [5] L. Reid, L.G. Roberts and B. Singh, *Finiteness of subintegrality*, Algebraic K-theory and algebraic topology (Lake Louise, AB, 1991), 223-227, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., **407**, Kluwer Acad. Publ., Dordrecht, 1993.
- [6] L.G. Roberts and B. Singh, *Subintegrality, invertible modules and the Picard group*, Compositio Math. **85** (1993), no. 3, 249-279.
- [7] V. Sadhu and B. Singh, *Subintegrality, invertible modules and polynomial extensions*, J. Algebra **393** (2013), 16-23.
- [8] V. Sadhu, Subintegrality, invertible modules and Laurent polynomial extensions, arxiv 1404.6498 (2014).