SWAN-WEIBEL'S HOMOTOPY TRICK AND INVERTIBLE MODULES OVER MONOID ALGEBRAS CMS Winter Meeting, 5-8 December 2014, Hamilton, Canada

Husney Parvez Sarwar
Department of Mathematics, IIT Bombay, India

Abstract

Let $A \subset B$ be an extension of commutative reduced rings and $M \subset$ N an extension of positive commutative cancellative torsion-free monoids. We prove that A is subintegrally closed in B and M is monoids. We prove that A is subintegrally closed in B and M is
subintegrally closed in N if and only if the group of invertible A subintegrally closed in N if and only if the group of invertible A
submodules of B is isomorphic to the group of invertible $A[M]$ submodules of B is
submodules of $B[N]$

Assumptions

- Throughout rings are commutative and monoids are positive commutative cancellative torsion-free.
- $A \subset B$ will denote the extension of rings and $M \subset N$ will denote the extension of monoids.

Definitions

- $\mathscr{I}(A, B):=$ The group of all invertible A-submodules of B
- The extension $A \subset A[b]$ is called elementary subintegral if $b^{2}, b^{3} \in A$.
- The extension $A \subset B$ is called subintegral if $B=\cup_{\lambda} B_{\lambda}$, where each B_{λ} is obtained from A by a finite succession of elementary subintegral extensions.
- The subintegral closure of A in B, denoted by ${ }_{B}{ }^{+} A$, is the largest subintegral extension of A in B.
- We say A is subintegrally closed in B if ${ }_{B}^{+} A=A$.
- The extension $M \subset N$ is called elementary subintegral if $N=$ $M \cup x M$ for some x with $x^{2}, x^{3} \in M$
- Replacing (A, B) by (M, N) in the above, we get the similar defintions for the monoid extension.

Motivation and Introduction

The group $\mathscr{I}(A, B)$ has been studied extensively by Roberts and Singh [6]. Recently Sadhu and Singh ([7], Theorem 1.5) proved that A is subintegrally closed in B if and only if $\mathscr{I}(A, B) \cong$ $\mathscr{I}\left(A\left[\mathbb{Z}_{+}\right], B\left[\mathbb{Z}_{+}\right]\right)$.
Motivated by this result, we inquire the following statement. A is subintegrally closed in B and M is subintegrally closed in N if and only if $\mathscr{I}(A, B)$ is isomorphic to $\mathscr{\mathscr { I }}(A[M], B[N])$.

Main Theorem

(a) If $A[M]$ is subintegrally closed in $B[N]$ and N is affine, then $\mathscr{I}(A, B) \cong \mathscr{I}(A[M], B[N])$.
(b) If B is reduced, A is subintegrally closed in B and M is subintegrally closed in N, then $\mathscr{I}(A, B) \cong \mathscr{I}(A[M], B[N])$.
(c) If $M=N$, then the reduced condition on B is not needed i.e. if A is subintegrally closed in B, then $\mathscr{I}(A, B) \cong$ $\mathscr{I}(A[M], B[M])$.
(d) (converse of (a, b) and (c)) If $\mathscr{I}(A, B) \cong \mathscr{I}(A[M], B[N])$, then (i) $A[M]$ is subintegrally closed in $B[N]$ and (ii) B is reduced or $M=N$.

Key Lemma (uses Swan-Weibel's homotopy trick)

Let $R=R_{0} \oplus R_{1} \oplus \cdots$ and $S=S_{0} \oplus S_{1} \oplus \cdots$ be two positively graded ring with $R \subset S$ and $R_{0} \subset S_{0}$. If the canonical map $\theta(R, S): \mathscr{I}(R, S) \rightarrow \mathscr{I}(R[X], S[X])$ is an isomorphism, then the canonical map $\theta\left(R_{0}, S_{0}\right): \mathscr{I}\left(R_{0}, S_{0}\right) \rightarrow \mathscr{I}(R, S)$ is also an isomorphism.

Proof of the Key Lemma (sketch)

- \mathscr{I} is a functor from the category of ring extensions to the category of abelian groups. For any morphism $\phi:(R, S) \rightarrow\left(R^{\prime}, S^{\prime}\right)$, $\mathscr{I}(\phi)$ denotes the group homomorphism from $\mathscr{I}(R, S) \rightarrow$ $\mathscr{I}\left(R^{\prime}, S^{\prime}\right)$.
- The following is a very important map. Let $w:(R, S) \rightarrow$ $(R[X], S[X])$ be a map defined as $w(s)=s_{0}+s_{1} X+\cdots+s_{r} X^{r}$, where $s=s_{0}+s_{1}+\cdots+s_{r} \in S$
- Let us look at following commutative diagram where all the maps are obvious

$$
\begin{gathered}
\mathscr{I}(R, S) \xrightarrow{\mathscr{I}(w)} \mathscr{I}(R[X], S[X]) \xrightarrow{\mathscr{I}\left(e_{1}\right)} \mathscr{H} \mathscr{I}(R, S) \\
\mathscr{I}\left(\left(e_{0}\right)\right. \\
\mathscr{I}\left(R_{0}, S_{0}\right) \xrightarrow{\theta\left(R_{0}, S_{0}\right)} \mathscr{I}(R, S) .
\end{gathered}
$$

- e_{1}, e_{0} are evaluation map at $X=1, X=0$ respectively. - Analyzing the diagram, one can conclude the Proof.

(3) Proof of the Main Theorem (a)

- Since N is positive affine, N has a positive grading. Since M is a submonoid of N, it has a positive grading induced from N.
- Therefore both $A[M]$ and $B[N]$ have positive grading. Hence we can write $A[M]=A_{0} \oplus A_{1} \oplus \cdots$ and $B[N]=B_{0} \oplus B_{1} \oplus \cdots$ with $A_{0}=$ $A, B_{0}=B$.
- We define $R:=A[M], S:=B[N]$ and $R_{0}:=A, S_{0}:=B$. By hypoth esis, R is subintegrally closed in S, hence by Sadhu and Singh, $\mathscr{I}(R, S) \cong \mathscr{I}(R[X], S[X])$
- Therefore by the Key Lemma, we obtain that $\mathscr{I}(A, B) \cong$ $\mathscr{I}(A[M], B[N])$.

An Interesting Corollary

Assume that A is subintegrally closed in B and M is subinte grally closed in N.
(i) If B is reduced or $M=N$ then $A[M]$ is subintegrally closed in $B[N]$.
(ii) Conversely if $A[M]$ is subintegrally closed in $B[N]$ and N is affine, then B is reduced or $M=N$

Application to Anderson's Result

- Let A be a reduced seminormal ring which is Noetherian or an integral domain. Let M be a positive seminormal monoid.
- Let K be the total quotient ring of A. Then K is a finite product of fields, hence $\operatorname{Pic}(K)$ is a trivial group. By Anderson ([3], Corollary 2), $\operatorname{Pic}(K[M])$ is a trivial qroup.
- We have $U(K)=U(K[M])$ and $U(A)=U(A[M])$.
$1 \longrightarrow U(A) \longrightarrow U(K) \longrightarrow \mathscr{I}(A, K) \longrightarrow P i c(A) \longrightarrow P i c(K$
$1 \longrightarrow U(A[M]) \longrightarrow U(K[M]) \rightarrow \mathscr{I}(A[M], K[M]) \longrightarrow \operatorname{Pic}(\dot{A}[M]) \longrightarrow \operatorname{Pic}(\dot{K}[\Lambda$
- Since by the Main Theorem $\mathscr{I}(A, K) \cong \mathscr{I}(A[M], K[M])$, we get that $\operatorname{Pic}(A) \cong \operatorname{Pic}(A[M])$. In this way we deduce the clasical result of Anderson from the Invertible module theory.

Summary/Conclusion

- Motivated by the result $\mathscr{I}(A, B) \cong \mathscr{I}(A[X], B[X])$ of Sadhu and Singh, we proved analogous results for the positive monoids.
- It will be very interesting to see analogous result for non positive monoids.
- We have some partial results in this direction

Remark

The results of this poster are going to appear in Journal of Commutative Algebra

Acknowledgement

I am grateful to my advisor, Prof. Manoj K. Keshari, for his guidance, motivation and many useful discussions. I thank Vivek Sadhu for introducing his results to me. I acknowledge the financial support of Council of Scientific and Industrial Research (C.S.I.R.), Government of India.

References

11] D.F. Anderson, Projective modules over subrings of $k[X, Y]$ generated by monomials, Pacific J. Math. 79 (1978), $5-17$.
[2] D.F. Anderson, Seminormal graded rings II, J. Pure Appl. Algebra 23 (1982), no. 3, 221 -
226. [3] D.F. Anderson, The Picard group of a monoid domain, J. Algebra 115 (1988), no. 2, 342-
351 W. Bruns and I. Gubeladze Polytopes Ringsand K-Theory. Springer Monograhs in Math[4] W. Bruns and
ematics, 2009.
[5] L. Reid, L.G. Roberts and B. Singh, Finiteness of subintegrality, Algebraic K-theory and
algeobrai topology (Lake Louise, AB, 1991), 223-227, NATO Adv. Sci. Inst. Ser. C Math. algebraic topology (Lake Louise, AB, 1991), 223-227, NATO Adv. Sci. Inst. Ser. C Math.
Phys. Sci., 407, Kluwer Acad. Publ., Dordrecht, 1993.

```
6 L.G. Roberts and B. Singh, Subintegralit,
```

$[7 \mathrm{JV}$. Sadhu and B. Singh, Subintegrality, invertible modules and polvnomial extensions, J.
[7] V. Sadhu and B. Singh,
Algebra 393 (2013), 16-23.
[8] V. Sadhu, Subintegrality, invertible modules and Laurent polynomial extensions, arxiv
1404.6498 (2014).

